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Motivation

Solutions of several rational approximation problems in C-norm
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Figure: Degree 29 Chebyshev polynomial on four segments
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Figure: Degree n = 31 Optimal Stability Polynomial for RK method of
accuracy degree p = 3
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Figure: Optimal gain-frequency characteristic of multiband electrical
filter, degree n = 326, g = 16 (Computed by Sergei Lyamaev)



Motivation: continued

Oscillatory behaviuor of solutions a.k.a. equiripple property or
Chebyshev’s alternation principle.

Chebyshev representation of polynomials

P(x) = ± cos(ni

∫ (x ,w)

(e,0)
dηM)

in terms of associated hyperelliptic curve M(E)

w2 =

2g+2∏
s=1

(x − es), (x ,w) ∈ C2, E = {es},

and distinguished differential dηM on it:
simple poles at infinity with residues ±1 and
purely imaginary periods:

dηM = (xg + . . . )
dx

w

∞+∞−
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Motivation: continued

Example:

Sphere g = 0 gives Chebyshëv polynomials (1853);
Tori g = 1 give a family of Zolotarëv polynomials (1868).

Abelian equations∫
C
dηM ∈

2πi

n
Z, ∀C ∈ H1(M,Z).

Q: How to conserve Abelian Eqs on a variable curve M?
A: Move along fibers of period map.
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Moduli spaces of real hyperelliptic curves

Consider moduli space H of real hyperelliptic curves with a marked
point ∞ (6= branchpoint) on an oriented real oval. Curves with
fixed topological invariants: the number k of real ovals and the
genus g make up a component Hk

g . Half of the symmetric

branching divisor E = Ē: 2k real points and g − k + 1 points of
the upper half plane (modulo translations and dilatations).

Hk
g := Hg−k+1\{diagonals}/permutations×42k−2

dimRHk
g = 2g ;

π1(Hk
g ) = Brg−k+1 (braids on g − k + 1

strings).



Period mapping

Locally we can define the period map Hk
g → Rg as follows: Given

a basis Cj in H1(M,Z),

Πj(E) = −i
∫
Cj

dηM(E), j = 1, . . . , 2g .

Globally the map is not correctly defined because of the
monodromy of Gauss-Manin connection: braids entangle the basic
odd cycles C−

j (Burau representation).
However, the period map Π is well defined on the universal cover
of the moduli space: Π : H̃k

g ' R2g → Rg .



Period mapping

Locally we can define the period map Hk
g → Rg as follows: Given

a basis Cj in H1(M,Z),

Πj(E) = −i
∫
Cj

dηM(E), j = 1, . . . , 2g .

Globally the map is not correctly defined because of the
monodromy of Gauss-Manin connection: braids entangle the basic
odd cycles C−

j (Burau representation).
However, the period map Π is well defined on the universal cover
of the moduli space: Π : H̃k

g ' R2g → Rg .



Period mapping

Locally we can define the period map Hk
g → Rg as follows: Given

a basis Cj in H1(M,Z),

Πj(E) = −i
∫
Cj

dηM(E), j = 1, . . . , 2g .

Globally the map is not correctly defined because of the
monodromy of Gauss-Manin connection: braids entangle the basic
odd cycles C−

j (Burau representation).
However, the period map Π is well defined on the universal cover
of the moduli space: Π : H̃k

g ' R2g → Rg .



Digression: Even and Odd Cycles

Simplification due
to mirror symetry
J̄(x ,w) = (x̄ , w̄):
cycles are split into
even/odd:
J̄C = ±C . Real
differential dηM has
trivial periods along
all even cycles due
to its normalization.
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Labyrinth model of the moduli space universal cover

r r r r
rrr H

A point E ∈ H2
4 is lifted to the universal cover by choosing the

labyrinth that accompanies it.



Labyrinth model of the moduli space universal cover
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Labyrinth of a point E ∈ H gives a natural basis in odd
1-homologies of the curve M(E). Fundamental group of the base
(braids) acts on labyrinths as MCG of punctured half plane.



Period mapping F.A.Q.

Natural questions about period mapping arise:

I Are fibers of Π smooth?

I How many rational fibers are there? (they parametrize
solutions to extremal problems)

I What is the range of Π?

I How Π interacts with braids? Are there fixed fibers?

I What is the global topology of a fiber? Connected?
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Period mapping F.A.Q.

Natural questions about period mapping arise:

I Are fibers of Π smooth?

I How many rational fibers are there? (they parametrize
solutions to extremal problems)

I What is the range of Π?

I How Π interacts with braids? Are there fixed fibers?

I What is the global topology of a fiber? Connected?

CONJECTURE(2001): Component of a fiber = g-cell.



Pictorial representation of curves

Let us fix a curve M ∈ H. Due to normalization of distinguished
differential, the function

W (x) := |Re
∫ (x ,w)

(e,0)
dηM |

I is single valued on the plane,

I harmonic outside its zero set (containing all branchpoints)

I has logarithmic pole at infinity.

I it’s level sets are the leaves of the foliation dη2M < 0 on the
sphere.
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Pictorial representation of curves

Construction of a graph Γ(M) := Γ ∪ Γ .

I Γ is zero set of W (x), not oriented;

I Γ are all segments of the horizontal foliation dη2M > 0
oriented with respect to the growth of W (x) and connecting
the finite critical points of the foliation to other such points or
to zeroset of W .

I Each edge is equipped with its length in the metric |dηM |.
I The vertices of the graph are the finite points of the divisor

(dηM
2) and their projections to the vertical component along

the horizontal foliation.
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Example of associated graph

r-� r?
6

r r
r r r
r r r

....... .......

Remarks:

I The multiplicity of V in divisor of (dηM)2

equals to ord(V ) := d (V ) + 2din(V )− 2.
Hence, combinatorics of the graph Γ(M)
gives topological invariants g , k of the
curve M.

I The periods of the differential dηM are
integer linear combinations of the lengths
of the vertical edges.

I The construction of the graph resembles
the Kontsevich-Strebel construction of
ribbon graphs (but not identical)
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Axiomatic description of graphs

Properties of associated graph:

1. Γ is a tree with horizontal symmety axis (Topology)

2. Outcoming horizontal edges are separated (Topology)

3. W (V ) = 0 iff V is on the vertical part of the graph (Width
normalization)

4. If ord(V ) = 0 then V ∈ Γ ∩ Γ (Minimal vertices)

5. The lengths of all vertical edges is π. (Height normalization)

Theorem
Each weighted graph satisfying the above properties 1-5 stems
from a unique curve M ∈ H.

Proof hint: The Riemann surface may be glued from a finite
number of stripes in a way determined by combinatorics and
weights of graph.

Algorithm

listing all admissible graphs with given topological invariants is
available.
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Coordinate space of a graph

The weights of the admissible graph have obvious linear
restrictions. They fill out a convex polyhedron A[Γ]: symplex
{Hs}× cone {Wj} of dimension at most 2g .

1.
∑

s Hs = π symplex

2. if V1 −→ V2 then W1 <W2, V∗ ∈ Γ cone

r-� r?
6

r r
r r r
r r r

....... .......H3

H2 H1

W2 W1

Example

g = 2;
k = 1;
dimA[Γ] = 2g = 4;
A[Γ] = {2(H1 + H2) + H3 = π}×
{0 <W1 <W2}

Theorem
Space A[Γ] is real analytically embedded to the moduli space H.
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Polyhedral model of Moduli space

We’ve built a cellular decomposition of the moduli space, cells are
encoded by admissible types of trees. It’s polyhedral model is made
in two steps:

A List all admissible graphs Γ with given g , k with full
dimA[Γ] = 2g
B Glue faces of polyhedra with the help of Neighboring relations

1. Contract edges of zero weight.

2. Glue neighbouring outcoming edges (to keep property 2 of Γ)

rr rr--��W1

W2

H
when H → 0 goes to

r r r-
����

HHY
HHj

W1

W2 if W1 <W2.
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A List all admissible graphs Γ with given g , k with full
dimA[Γ] = 2g
EXAMPLE: 20 codimension zero cells in the space H2

3 (up to
symmetry)
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Polyhedral model of Universal cover of moduli space

For all full dimensional polyhedra A[Γ] there is a canonical lift to
H̃ by attaching a labyrinth not intersecting the graph Γ.

Model of the universal cover:

H̃k
g = ∪ β · A[Γ],

braids β ∈ Brg−k+1, and graphs with given g(Γ) and k(Γ).

Glueing rules:
A polyhedron β1 · A[Γ1] attached to β2 · A[Γ2] along their common
face Γ12 iff β1 = β12β2, where the braid β12 maps the labyrinth
inherited by Γ12 from Γ1 to the labyrinth inherited from Γ2.
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H̃ by attaching a labyrinth not intersecting the graph Γ.

Exceptional graphs = graphs with nonhanging branchpoints in
upper halfplane.

Graph from H1
3 admitting three labyrinths transformed by braids

generators.
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face Γ12 iff β1 = β12β2, where the braid β12 maps the labyrinth
inherited by Γ12 from Γ1 to the labyrinth inherited from Γ2.
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Periods map

A convenient basis in the odd cycles of the curve is related to the
labyrinth (it is transported by G-M connection).

The holonomy of the connection looks like Burau representation of
braids:

β1·

 C1

C2

C3

 =

 C2

2C2 − C1

C3

 β2·

 C1

C2

C3

 =

 C1

C3

2C3 − C1





Periods map

Period map is a liner function in local coordinates (heights) of the
cell. It is easy to compute it for the associated labyrinth of a graph:
EXAMPLE:

Π(Λ) =

 h1
h2
h3

 =

=

 H1 + H2 + H3

H1 + H2 + H3 + H4

H1 + H2 + H3 + 2H4 + H5


Value of Π(Λ) lies in a symplex
∆3 0 < h1 < h2 < h3 < π



Polyhedral model of fibers of Periods map

Let us introduce a intersection A[Γ, h] of the polyhedron A[Γ] ⊂ H
and a fiber Π−1(h), h from symplex ∆g . This is a polyhedron of
dimension g .



Polyhedral model of fibers of Periods map

Let us introduce a intersection A[Γ, h] of the polyhedron A[Γ] ⊂ H
and a fiber Π−1(h), h from symplex ∆g . This is a polyhedron of
dimension g .

EXAMPLE Polygon A[Γ, h] for Γ = Γ from H1
2 (this space

contains 9 full dimension cells)

Fix the periods:
H1 + H2 = h1
H1 + 2H2 + H3 + H4 = h2
H1 + 2H2 + H3 + 2H4 + H5 = π
(normalization)
Positive coordinates H2,H4 in the
polygon satisfy
H2 < h1
H4 < π − h2
H2 + H4 < h2 − h1



Polyhedral model of fibers of Periods map

Let us introduce a intersection A[Γ, h] of the polyhedron A[Γ] ⊂ H
and a fiber Π−1(h), h from symplex ∆g . This is a polyhedron of
dimension g .

Phase diagram for the space H1
2
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a

b

c

d

e
A[Γ, h] =


rectangle h ∈ a
pentagon h ∈ b
trapezoid h ∈ c , d
triangle h ∈ e

For other graphs the polygons A[Γ, h]
are half-stripes or quadrants or empty.



Polyhedral model of fibers of Periods map

Let us introduce a intersection A[Γ, h] of the polyhedron A[Γ] ⊂ H
and a fiber Π−1(h), h from symplex ∆g . This is a polyhedron of
dimension g .

Assembling the Period map fiber from cells:

Π−1(h) = ∪ β · A[Γ, β−1 · h],

braids: β−1 · h ∈ ∆g ; graphs: with given topological invariants
g , k.



Assembly for fibers of the space H̃1
2

Fiber Π−1(h) with h from the above phase diagram:



The above fiber in ’e’ phase assembled
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This is Sasha Zvonkin’s picture of a fiber. (Could we see it in
State Hermitage Museum?)

I thank everyone for the patience!
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